E是AB的中点,F是BC的中点,则S△BCE=S△DBF=S△DFC=1/4S正ABCD=1/4×120=30平方厘米
连接GF,F是BC的中点,则S△GBF=S△GFC
又有对称性,得S△GBE=S△GBF=S△GFC=30/3=10平方厘米
设S△GHF=x,则S△HFC=10-x
由S△GHF/S△DGF=S△HFC/S△DFC=HF/DF,得x/(30-10)=(10-x)/30,解得x=4
所以四边形BGHF的面积=S△GBF+S△GHF=10+4=14平方厘米.
E是AB的中点,F是BC的中点,则S△BCE=S△DBF=S△DFC=1/4S正ABCD=1/4×120=30平方厘米
连接GF,F是BC的中点,则S△GBF=S△GFC
又有对称性,得S△GBE=S△GBF=S△GFC=30/3=10平方厘米
设S△GHF=x,则S△HFC=10-x
由S△GHF/S△DGF=S△HFC/S△DFC=HF/DF,得x/(30-10)=(10-x)/30,解得x=4
所以四边形BGHF的面积=S△GBF+S△GHF=10+4=14平方厘米.