解题思路:(1)连接AD,根据等腰三角形的性质和垂直平分线的性质可证明BD=AD,再根据含30°角的直角三角形性质可证明:AD:DC=1;2,所以BD:DC=1:2;
(2)如图2,过点A作AF⊥BC交于点F,则BC=2BF,由(1)可知△ADB中,AD=BD,∠ADB=120°,设A1C分别交AE1,AB于点M和N,证明△A1E1B∽△ABC,根据相似三角形的性质即可证明线段AE1与A1C的数量关系及它们所夹锐角的度数.
(1)如图1,连接AD,
在△ABC中,AB=AC,∠BAC=120°,
∴∠ABC=∠C=30°,
∵AB的垂直平分线交BC于点D,
∴BD=AD,
∴∠BAD=∠ABC=30°,
∴∠DAC=∠BAC=∠BAD=90°,
在Rt△ACD中,∠C=30°,
∴AD:DC=1;2,
∴BD:DC=1:2;
(2)如图2,过点A作AF⊥BC交于点F,则BC=2BF,
由(1)可知△ADB中,AD=BD,∠ADB=120°,
∵点E与点D关于直线AB对称,
∴AE=BE,∠BEA=120°,
∵△ABE绕点B逆时针方向旋转到△A1BE1.
∴A1E1=E1B,∠A1E1B=120°,
∴∠2=30°,
∵∠1=30°,∠BAC=120°,
∴△A1E1B∽△ABC,
∴
E1B
AB=
A1B
BC,∠E1AB=∠A1CB,
∵∠1=30°,cos∠1=[BE/AB],
∴
BE
AB=
3
2,
∴BC=
3AB,
∴
AE1
A1C=
AB
BC=
3
3,
设A1C分别交AE1,AB于点M和N,
∵∠ANM=∠BNC,且∠NAM=∠NCB,
∴∠AMN=∠1=30°,
∴AE1与A1C的夹角的度数为30°,
∴线段AE1与A1C的数量关系及它们所夹锐角的度数分别是A1C=
3AE1和30°.
点评:
本题考点: 相似形综合题.
考点点评: 本题考查了等腰三角形的性质、直角三角形的判定和性质、相似三角形的判定和性质、垂直平分线的性质、图形旋转的性质以及特殊角的锐角三角函数值,题目的综合性很强,对学生的综合解题能力要求很高.