1.∵直线过点P(1,1),倾斜角为π/6,
∴直线方程为y-1=tan(π/6)(x-1)
(y-1)/sin(π/6) =(x-1)/cosπ/6
令t=(y-1)/sin(π/6) =(x-1)/cosπ/6
则x=1+t×cosπ/6,y=1+t×sin(π/6)
∴参数方程为x=1+(√3t)/2,y=1+t/2,(t为参数).2.
x=1+(√3t)/2
把直线 代入x^2+y^2=4
y=1+t/2得 [1+(√3t)/2]^2+(1+t/2)^2=4
t^2+(√3+1)t-2=0 t1t2=-2
则点P到A,B两点的距离之积为2.