(cosx^2 )(e^x)在[0,π]求定积分

2个回答

  • ∫e^x*cos²x dx when x=0 to π

    = (1/2)∫e^x(1+cos2x) dx,simplify the expression first.

    = (1/2)∫(e^x+e^x*cos2x) dx

    = (1/2)∫e^x dx + (1/2)∫e^x*cos2x dx

    For (1/2)∫e^x dx

    = 1/2*e^x(0 to π)

    = (e^π-1)/2

    For (1/2)∫e^x*cos2x dx

    Applying the formula ∫e^(ax)*cos(bx) = e^(ax)*[acos(bx)+bsin(bx)]/(a²+b²)

    = (1/2)*e^x*(cos2x+2sin2x)/(1+2²)(0 to π)

    = (1/10)*[e^π*(cos2π+2sin2π)-e^0*(cos0+2sin0)]

    = (e^π-1)/10

    So the integral is equal to:

    (e^π-1)/2 + (e^π-1)/10

    = (3/5)(e^π-1)