由隐函数的求导法则,
x^y+y^x+z^x=1 对x求导,y*x^(y-1)+y^x*ln(y)+z^x*[ln(z)+(z'_x)*x/z]=0,于是
z'_x=-z*[x^y*y/x+y^x*ln(y)+z^x*ln(z)]/[z^x*x],
同理可得:z'_y=-z*[x^y*ln(x)+y^x*x/y]/[z^x*x].
由隐函数的求导法则,
x^y+y^x+z^x=1 对x求导,y*x^(y-1)+y^x*ln(y)+z^x*[ln(z)+(z'_x)*x/z]=0,于是
z'_x=-z*[x^y*y/x+y^x*ln(y)+z^x*ln(z)]/[z^x*x],
同理可得:z'_y=-z*[x^y*ln(x)+y^x*x/y]/[z^x*x].