解题思路:(1)法一:由
a
n
=
n(n+1)
2
=
n
2
2
+
n
2
,分组求和可求Sn
(2)由Tn=
C
3
3
+
C
3
4
+C
3
5
+…+
C
3
n+1
+
C
3
n+2
,利用组合式的性质可求
法2:(1):由
a
n
=
n(n+1)
2
=
n(n+1)[(n+2)−(n+1)]
6
=
n(n+1)(n+2)−n(n−1)(n+1)
6
,代入相消法可求和
(2)由(1)中的
S
n
=
n(n+1)(n+2)
6
=
[n(n+1)(n+2)(n+3)−(n−1)n(n+1)(n+2)]
24
,可求Tn
(1)法一:∵an=
n(n+1)
2=
n2
2+
n
2=
C2n+1
∴Sn=(
12
2+
1
2)+(
22
2+
2
2)+…+(
n2
2+[n/2])
=[1/2(12+22+…+n2)+
1
2(1+2+…+n)
=
1
2]×
n(n+1)(2n+1)
6+[1/2]×
n(n+1)
2
=
n(n+1)(2n+1)
12+
n(n+1)
4=
(n+1)(2n2+4n)
12
=
n(n+1)(n+2)
6=
C3n+2
(2)Tn=
C33+
C34
+C35+…+
C3n+1+
C3n+2
=
点评:
本题考点: 数列的求和.
考点点评: 本题主要考查了数列和的求解,解题的关键是熟练应用组合式的性质并能灵活变形.