(2012•茂名二模)在数列{an}中,an=n(n+1)2.则

1个回答

  • 解题思路:(1)法一:由

    a

    n

    n(n+1)

    2

    =

    n

    2

    2

    +

    n

    2

    ,分组求和可求Sn

    (2)由Tn=

    C

    3

    3

    +

    C

    3

    4

    +C

    3

    5

    +…+

    C

    3

    n+1

    +

    C

    3

    n+2

    ,利用组合式的性质可求

    法2:(1):由

    a

    n

    n(n+1)

    2

    =

    n(n+1)[(n+2)−(n+1)]

    6

    =

    n(n+1)(n+2)−n(n−1)(n+1)

    6

    ,代入相消法可求和

    (2)由(1)中的

    S

    n

    n(n+1)(n+2)

    6

    =

    [n(n+1)(n+2)(n+3)−(n−1)n(n+1)(n+2)]

    24

    ,可求Tn

    (1)法一:∵an=

    n(n+1)

    2=

    n2

    2+

    n

    2=

    C2n+1

    ∴Sn=(

    12

    2+

    1

    2)+(

    22

    2+

    2

    2)+…+(

    n2

    2+[n/2])

    =[1/2(12+22+…+n2)+

    1

    2(1+2+…+n)

    =

    1

    2]×

    n(n+1)(2n+1)

    6+[1/2]×

    n(n+1)

    2

    =

    n(n+1)(2n+1)

    12+

    n(n+1)

    4=

    (n+1)(2n2+4n)

    12

    =

    n(n+1)(n+2)

    6=

    C3n+2

    (2)Tn=

    C33+

    C34

    +C35+…+

    C3n+1+

    C3n+2

    =

    点评:

    本题考点: 数列的求和.

    考点点评: 本题主要考查了数列和的求解,解题的关键是熟练应用组合式的性质并能灵活变形.