f(x)+f(y)=lg(1-x)/(1+x)+lg(1-y)/(1-y)
=lg[(1-x)(1-y)/(1+x)(1+y)]
=lg[(1-(x+y)+xy)/(1+(x+y)+xy)]
f(x+y/1+xy)=lg[(1-(x+y)/(1+xy))/(1+(x+y)/(1+xy))]
=lg[(1+xy-(x+y))/(1+xy+(x+y))]
所以 等式成立
f(x)+f(y)=lg(1-x)/(1+x)+lg(1-y)/(1-y)
=lg[(1-x)(1-y)/(1+x)(1+y)]
=lg[(1-(x+y)+xy)/(1+(x+y)+xy)]
f(x+y/1+xy)=lg[(1-(x+y)/(1+xy))/(1+(x+y)/(1+xy))]
=lg[(1+xy-(x+y))/(1+xy+(x+y))]
所以 等式成立