观察下列算式 (x-1)(x+1)=x^2-1;(x-1)(x²+x+1)=x³-1;(x-1)(x
1个回答
是(x-1)[x^(n-1)+x^(n-2)+……+x+1]=x^n-1
所以x^n-1=(x-1)[x^(n-1)+x^(n-2)+……+x+1]
相关问题
观察下列算式:(x-1)(x+1)=x²-1;(x-1)(x²+x+1)=x³-1;.
观察下列算式: (x-1)(x+1)=x²-1;(x-1)(x²+x+1)=x³-1;
观察下列等式观察下列等式:(x-1)(x+1)=x^2-1;(x-1)(x^2+x+1)=x^3-1;(x-1)(x^3
观察下列各式:(x-1)(x+1)=x2-1,(x-1)(x2+x+1)=x3-1,(x-1)(x3+x2+x+1)=x
观察下列各式:(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x
观察下列各式:(x-1)(x+1)=x2-1,(x-1)(x2+x+1)=x3-1,(x-1)(x3+x2+x+1)=x
1、观察下列等式(x-1)(x+1)=x2-1; (x-1)(x2+x+1)=x3-1; (x-1)(x3+x2+x+1
观察下列各式:(x-1)(x+1)=x^2-1(x-1)(x^2+x+1)=x^3-1(x-1)(x^3+x^2+x+1
观察下列各式:(x-1)(x+1)=x 2 -1;(x-1)(x 2 +x+1)=x 3 -1;(x-1)(x 3 +x
观察下列格式:(x-1)(x+1)=x^2-1,(x-1)(x^2+x+1)=x^3-1,(x-1)(x^3+x^2+x