设y=y(x),在R上可微,有里卡蒂方程(Riccati Equation):
y' = f1(x) + f2(x)y + f3(x)y^2;
可令v=v(x) = y*f3(x)代入,得
v'(x) = v^2 + R(x)v + S(x)
其中有R(x)=f2+[f3'(x)/f3(x)],S(x)=f1(x)*f3(x);
再令v(x)=−u'(x)/u(x),u=u(x)在R上可微且不为零,代入上式,即可以化为关于u的二阶线性微分方程:
u''−R(x)u'+S(x)u=0.
设y=y(x),在R上可微,有里卡蒂方程(Riccati Equation):
y' = f1(x) + f2(x)y + f3(x)y^2;
可令v=v(x) = y*f3(x)代入,得
v'(x) = v^2 + R(x)v + S(x)
其中有R(x)=f2+[f3'(x)/f3(x)],S(x)=f1(x)*f3(x);
再令v(x)=−u'(x)/u(x),u=u(x)在R上可微且不为零,代入上式,即可以化为关于u的二阶线性微分方程:
u''−R(x)u'+S(x)u=0.