设 P-Q=1+2*x^4-2*x^3-x^2=(2*x^2+a*x+1)*(x^2+b*x+1)
右边展开= 2*x^4 + (a + 2*b)*x^3 + (a*b + 3)*x^2 + (a + b)*x + 1
与左边比较可得:
a+2b=-2
a+b=0
解得 a=2,b=-2
所以
P-Q=1+2*x^4-2*x^3-x^2
=(2*x^2+2*x+1)*(x^2-2*x+1)
=(2*x^2+2*x+1)*(x-1)^2
=[2(x+1/2)^2+1/2]*(x-1)^2 恒大于>0
所以 P>Q