解题思路:由已知直线的方程求出其斜率,进一步得到其倾斜角,根据函数f(x)图象上A处的切线与x-y+3=0的夹角为45°,求得过A点的切线的倾斜角,得到斜率,设出切点A(x0,y0),由f′(x0)=0求得x0的值.
∵直线x-y+3=0的斜率为1,∴其倾斜角为45°,
又函数f(x)=2x3-[1/2]x2+m(m为常数)图象上A处的切线与x-y+3=0的夹角为45°,
∴函数f(x)=2x3-[1/2]x2+m(m为常数)图象上A处的切线的倾斜角为0°或90°.
∴切线的斜率为0或不存在.
由f(x)=2x3-[1/2]x2+m,得
f′(x)=6x2-x,
设A(x0,y0),
∴f′(x0)=6x02−x0.
由6x02−x0=0,得x0=0或x0=
1
6.
故选:C.
点评:
本题考点: 利用导数研究曲线上某点切线方程.
考点点评: 本题考查了直线的夹角,考查了利用导数研究曲线上某点的切线方程,是中档题.