1.当x趋于0时,
lim(a^x-1)/xIna=lima^xlna/lna=1
所以:a^x-1~xIna
2.xy=e^(x+y)
两边对x求导:xy‘+y=e^(x+y)(1+y')
y’=(e^(x+y)-y)/(x-e^(x+y))=(xy-y)/(x-xy)
dy=[(xy-y)/(x-xy)]dx
1.当x趋于0时,
lim(a^x-1)/xIna=lima^xlna/lna=1
所以:a^x-1~xIna
2.xy=e^(x+y)
两边对x求导:xy‘+y=e^(x+y)(1+y')
y’=(e^(x+y)-y)/(x-e^(x+y))=(xy-y)/(x-xy)
dy=[(xy-y)/(x-xy)]dx