1+secx+tanx/1+secx-tanx
=(1+secx+tanx)^2/[(1+secx)^2-(tanx)^2]
=[1+(tanx)^2+(secx)^2+2secx+2tanx+2secx·tanx]/[2+2secx]
=[(secx)^2+secx+tanx+secx·tanx]/[1+secx]
=[secx+1][secx+tanx]/[1+secx]
=secx+tanx
=1/cosx+sinx/cosx
=(1+sinx)/cosx
1+secx+tanx/1+secx-tanx
=(1+secx+tanx)^2/[(1+secx)^2-(tanx)^2]
=[1+(tanx)^2+(secx)^2+2secx+2tanx+2secx·tanx]/[2+2secx]
=[(secx)^2+secx+tanx+secx·tanx]/[1+secx]
=[secx+1][secx+tanx]/[1+secx]
=secx+tanx
=1/cosx+sinx/cosx
=(1+sinx)/cosx