f(x)=-f(x) f(x)+f(-x)=0 f(0)=0
2^0/m-m/2^0=0
1/m-m=0
m=±1
m=1
f(x)=2^x-1/2^x
x1>x2
2^x1-1/2^x1-2^x2+1/2^x2
=(2^x1-2^x2)+(1/2^x2-1/2^x1)>0
f(x)增
m=-1
f(x)=-2^x+1/2^x
x1>x2
-2^x1+1/2^x1+2^x2-1/2^x2
=-(2^x1-2^x2)-(1/2^x2-1/2^x1)
f(x)=-f(x) f(x)+f(-x)=0 f(0)=0
2^0/m-m/2^0=0
1/m-m=0
m=±1
m=1
f(x)=2^x-1/2^x
x1>x2
2^x1-1/2^x1-2^x2+1/2^x2
=(2^x1-2^x2)+(1/2^x2-1/2^x1)>0
f(x)增
m=-1
f(x)=-2^x+1/2^x
x1>x2
-2^x1+1/2^x1+2^x2-1/2^x2
=-(2^x1-2^x2)-(1/2^x2-1/2^x1)