∫cos^2(1-2x)dx
= ∫ [cos(2-4x)+1]/2 dx
= [ ∫cos(2-4x)dx ]/2+∫(1/2)dx
= -[∫cosudu]/8 +x/2+C
=(-sinu)/8 + x/2+C
=[-sin(2-4x)]/8 +x/2+C
∫(sin ax cos ax) dx
=[ ∫(sin ax)d sinax ]/a
=(sin^2 ax) /2a +C
∫cos^2(1-2x)dx
= ∫ [cos(2-4x)+1]/2 dx
= [ ∫cos(2-4x)dx ]/2+∫(1/2)dx
= -[∫cosudu]/8 +x/2+C
=(-sinu)/8 + x/2+C
=[-sin(2-4x)]/8 +x/2+C
∫(sin ax cos ax) dx
=[ ∫(sin ax)d sinax ]/a
=(sin^2 ax) /2a +C