设A(1,1),B(4,2)
AB的斜率=(2-1)/(4-1)=1/3
直线为:y-1=1/3(x-1)
y=x/3+2/3
x:1->4
所以
原式=∫(1,4)[x+x/3+2/3+1/3(x/3+2/3-x)]dx
=∫(1,4)(10x/9+8/9)dx
=(5x²/9+8/9x)|(1,4)
=112/9-13/9
=11
设A(1,1),B(4,2)
AB的斜率=(2-1)/(4-1)=1/3
直线为:y-1=1/3(x-1)
y=x/3+2/3
x:1->4
所以
原式=∫(1,4)[x+x/3+2/3+1/3(x/3+2/3-x)]dx
=∫(1,4)(10x/9+8/9)dx
=(5x²/9+8/9x)|(1,4)
=112/9-13/9
=11