连接AC、AD.
因为,在△ABC和△AED中,AB = AE ,∠ABC = ∠AED ,BC = ED ,
所以,△ABC ≌ △AED ,
可得:AC = AD ,∠ACB = ∠ADE ;
因为,△ACD是等腰三角形,
所以,∠ACD = ∠ADC ,
可得:∠BCD = ∠ACB+∠ACD = ∠ADE+∠ADC = ∠CDE ,
即有:∠C = ∠D .
连接AC、AD.
因为,在△ABC和△AED中,AB = AE ,∠ABC = ∠AED ,BC = ED ,
所以,△ABC ≌ △AED ,
可得:AC = AD ,∠ACB = ∠ADE ;
因为,△ACD是等腰三角形,
所以,∠ACD = ∠ADC ,
可得:∠BCD = ∠ACB+∠ACD = ∠ADE+∠ADC = ∠CDE ,
即有:∠C = ∠D .