简单来说,在这个区间上,函数图像你可以一笔画成,就可以认为是连续的,如果说函数图像不能一笔画成,也就是出现了间断点,那么就说这个函数在这个区间上不连续.
相关证明涉及高等数学中的极限知识.
定义:设函数f(x)在点x0的某个邻域内有定义,如果有 lim(x->x0) f(x)=f(x0),则称函数在点x0处连续,且称x0为函数的的连续点.
简单来说,在这个区间上,函数图像你可以一笔画成,就可以认为是连续的,如果说函数图像不能一笔画成,也就是出现了间断点,那么就说这个函数在这个区间上不连续.
相关证明涉及高等数学中的极限知识.
定义:设函数f(x)在点x0的某个邻域内有定义,如果有 lim(x->x0) f(x)=f(x0),则称函数在点x0处连续,且称x0为函数的的连续点.