∵lim(n->∞){n*ln[(a^(1/n)+b^(1/n)+c^(1/n))/3]}
=lim(n->∞){ln[(a^(1/n)+b^(1/n)+c^(1/n))/3]/(1/n)}
=lim(x->0){ln[(a^x+b^x+c^x)/3]/x} (令x=1/n)
=lim(x->0){[ln(a^x+b^x+c^x)-ln3]/x}
=lim(x->0)[(a^x*lna+b^x*lnb+c^x*lnc)/(a^x+b^x+c^x)] (0/0型极限,应用罗比达法则)
=(lna+lnb+lnc)/(1+1+1)
=ln(abc)/3
∴lim(n->∞){[(a^(1/n)+b^(1/n)+c^(1/n))/3]^n}
=lim(n->∞){e^{n*ln[(a^(1/n)+b^(1/n)+c^(1/n))/3]}}
=e^{lim(n->∞){n*ln[(a^(1/n)+b^(1/n)+c^(1/n))/3]}}
=e^[ln(abc)/3]
=(abc)^(1/3).