如图,以D为原点,DA为单位长建立空间直角坐标
系D-xyz.则DA=(1,0,0),CC′=(0,0,1),BD′=(-1,-1,1).
设P(x,y,z)则BP=λBD′,∴(x-1,y-1,z)=(-λ,-λ,λ)
∴x=1-λy=1-λz=λ,则DP=(1-λ,1-λ,λ),由已知,<DP,DA>=60°,
∴λ2-4λ+2=0,解得λ=2-2,∴DP=(2-1,2-1,2-2)(4分)
(Ⅰ)因为cos<DP,CC′>=2-22(2-1)=22,
所以<DP,CC′>=45°.即DP与CC'所成的角为45°.(8分)
(Ⅱ)平面AA'D'D的一个法向量是DC=(0,1,0).
因为cos<DP,DC>=2-12(2-1)=12,所以<DP,DC>=60°.
可得DP与平面AA'D'D所成的角为30°.(12分)