(1)∵点A(m-4,0)和C(2m-4,m-6)在直线y=-x+p上
∴ -(m-4)+p=0 m=3
-(2m-4)+p=m-6, 解得: p=-1
∴A(-1,0) B(3,0), C(2,-3)
设抛物线y=ax2+bx+c=a(x-3)(x+1),
∵C(2,-3) ∴a=1
∴抛物线解析式为:y=x2-2x-3
(2)AC=3,AC所在直线的解析式为:y=-x-1,∠BAC=450
∵平行四边形ACQP的面积为12.
∴平行四边形ACQP中AC边上的高为=2
过点D作DK⊥AC与PQ所在直线相交于点K,DK= 2,∴DN=4
∵ACPQ,PQ所在直线在直线ACD的两侧,可能各有一条,
∴PQ的解析式或为y=-x+3或y=-x-5
∴ y=x2-2x-3
y=-x+3
解得: x1=3 或 x2=-2
y1=0 y2=5
y=x2-2x-3
y=-x-5 方程组无解.即P1(3,0), P2(-2,5)
∵ACPQ是平行四边形 ,A(-1,0) C(2,-3)
∴当P(3,0)时,Q(6,-3);当P(-2,5)时,Q(1,2)
∴满足条件的P,Q点是P1(3,0),Q1(6,-3)或 P2(-2,5),Q2(1,2)
设M(t,t2-2t-3),(-1<t<3),过点M作y轴的平行线,交PQ所在直线雨点T,则T(t,-t+3)
MT=(-t+3)-( t2-2t-3)=- t2+t+6
过点M作MS⊥PQ所在直线于点S,
MS=MT= (- t2+t+6)=- (t-)2+
∴当t=时,M(,-),⊿PQM中PQ边上高的最大值为