证:
n = 0
{[(r^(0+1)]-1}/(r-1) = 1
若对n = a,a≥0有
1+r+r^2+...+r^a={[(r^(a+1)]-1}/(r-1)
n = a+1
1+r+r^2+...+r^a+r^(a+1)
= {[(r^(a+1)]-1}/(r-1) +r^(a+1)
= {[(r^(a+1)]-1 + (r-1) * r^(a+1)}/(r-1)
= {[(1+r-1) * (r^(a+1)]-1}/(r-1)
= {r^[(a+1)+1] - 1} / (r-1)
则对n = a+1,1+r+r^2+...+r^a+r^(a+1)= {r^[(a+1)+1] - 1} / (r-1)也成立
综上所述,由数学归纳法得知,对任意自然数n,1+r+r^2+...+r^n=[(r^n+1)-1]/r-1.