三角函数证明题

1个回答

  • 记T=sina+sin(a+b)+...+sin(a+nb)

    两边同时乘以sin(b/2):

    Tsin(b/2)=sinasinb/2+sin(a+b)sinb/2+...sin(a+nb)sinb/2

    再用积化和差公式:sinasinb=[cos(a-b)-cos(a+b)]/2

    得Tsin(b/2)=[cos(a-b/2)-cos(a+b/2)+cos(a+b/2)-cos(a+3b/2)+cos(a+3b/2)-cos(a+5b/2)+...

    +cos(a+nb-b/2)-cos(a+nb+b/2)]/2

    正负项抵消,得

    Tsin(b/2)=[cos(a-b/2)-cos(a+nb+b/2)]/2,再用和差化积公式:

    Tsin(b/2)=-sin(a+nb/2)sin(-nb/2-b/2)

    故有T=sin(a+nb/2)sin(nb/2+b/2)/sin(b/2)

    得证.