证明:延长CE和BA交于点F
∵BD平分∠ABC →∠CBE=∠EBF
CE⊥BE(BD) →∠CEB=∠FEB
BE是公共边
∴△CEB≌△FEB →CE=EF=1/2CF
∵∠FCA+∠CDE=90=∠ADB+∠ABD,∠CDE=∠ADB,→∠FCA=∠DBA
∠A=90°→∠CAF=∠BAD
AC=AB
∴△CAF≌△BAD →CF=BD
又∵CE=EF=1/2CF(已证)
∴CE=1/2BD
证明:延长CE和BA交于点F
∵BD平分∠ABC →∠CBE=∠EBF
CE⊥BE(BD) →∠CEB=∠FEB
BE是公共边
∴△CEB≌△FEB →CE=EF=1/2CF
∵∠FCA+∠CDE=90=∠ADB+∠ABD,∠CDE=∠ADB,→∠FCA=∠DBA
∠A=90°→∠CAF=∠BAD
AC=AB
∴△CAF≌△BAD →CF=BD
又∵CE=EF=1/2CF(已证)
∴CE=1/2BD