数列{xn}有极限的充要条件是:对任意给定的ε>0,有一正整数N,当m,n>N时,有|xn-xm|0,有Z属于实数,当x,y>Z时,有|f(x)-f(y)|n
|xn-xm|=| [(-1)^(n+2)]/(n+1)+.+[(-1)^(m+1)]/m |
当m-n为奇数时 |xn-xm|=| [(-1)^(n+2)]/(n+1)+.+[(-1)^(m+1)]/m |
数列{xn}有极限的充要条件是:对任意给定的ε>0,有一正整数N,当m,n>N时,有|xn-xm|0,有Z属于实数,当x,y>Z时,有|f(x)-f(y)|n
|xn-xm|=| [(-1)^(n+2)]/(n+1)+.+[(-1)^(m+1)]/m |
当m-n为奇数时 |xn-xm|=| [(-1)^(n+2)]/(n+1)+.+[(-1)^(m+1)]/m |