解题思路:利用图形翻折变换前后对应部分大小不变,对应角之间关系,从而得出△BDF是等腰三角形,进而得出DE是△ABC的中位线,
根据AD不一定等于EF,得出四边形ADFE不是平行四边形,从而得出答案.
∵三角形纸片ABC沿DE折叠,使点A落在BC边上的点F处,且DE∥BC,
∴AD=DF,AE=EF,∠ADE=∠B,∠ADE=∠EDF,∠EDF=∠DFB,
∴∠B=BFD,
∴△BDF是等腰三角形,故本选项①正确;
∴BD=DF,
∴AD=BD,同理可得出:AE=CE,
∴DE是△ABC的中位线,
∴DE=
1
2BC;故本选项②正确;
∵AB不一定等于AC,
∴AD不一定等于EF,四边形ADFE不是平行四边形;
∴故本选项③错误;
∵△BDF是等腰三角形,∠B=∠BFD=∠ADE,
∴∠C=∠CFE=∠AED,
∴∠BDF=180°-2∠B,∠FEC=180°-2∠C,
∴∠A=180°-∠B-∠C,
∴∠BDF+∠FEC=2∠A.
故本选项④正确.
故答案为:①②④.
点评:
本题考点: 翻折变换(折叠问题).
考点点评: 此题主要考查了图形的翻折变换,正确应用图形翻折变换前后对应部分大小不变是解决问题的关键.