sinA=3/5,则cosA=4/5或cosA=-5/4
cosB=15/17,则sinB=8/17
所以cosC=cos(π-A-B)=-cos(A+B)=-cosAcosB+sinAsinB=-(4/5)×(15/17)+(3/5)×(8/17)=-36/85,或cosC=-(-4/5)×(15/17)+(3/5)×(8/17)=84/85
sinA=3/5,则cosA=4/5或cosA=-5/4
cosB=15/17,则sinB=8/17
所以cosC=cos(π-A-B)=-cos(A+B)=-cosAcosB+sinAsinB=-(4/5)×(15/17)+(3/5)×(8/17)=-36/85,或cosC=-(-4/5)×(15/17)+(3/5)×(8/17)=84/85