解题思路:(A)根据题意∠C=90°,可以得出△ABC面积为12×4×8=16,△PCQ的面积为12(8-x)(4-x),设出t秒后满足要求,则根据△PCQ的面积是△ABC面积的一半列出等量关系求出t的值即可;(B)(1)根据三角形的面积公式可以求出时间t;(2)由等量关系S△PCQ=12S△ABC列方程求出t的值,但方程无解.
(A)设经过x秒后△PCQ的面积是Rt△ACB面积的一半,
则:[1/2](8-x)(4-x)=[1/2]×[1/2]×4×8,
解得x1=6+2
5(舍去),x2=6-2
5.
答:(6-2
5)秒后△PCQ的面积是Rt△ACB面积的一半;
(B)(1)∵S△PCQ=[1/2]t(8-2t),S△ABC=[1/2]×4×8=16,
∴[1/2]t(8-2t)=16×[1/4],
整理得t2-4t+4=0,
解得t=2.
答:当t=2s时△PCQ的面积为△ABC面积的[1/4];
(2)当S△PCQ=[1/2]S△ABC时,[1/2]t(8-2t)=16×[1/2],
整理得t2-4t+8=0,
△=(-4)2-4×1×8=-16<0,
∴此方程没有实数根,
∴△PCQ的面积不可能是△ABC面积的一半.
点评:
本题考点: 一元二次方程的应用.
考点点评: 本题考查一元二次方程的应用,三角形的面积,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.