解题思路:由边形ABCD是平行四边形,可得AB∥CD,即可证得△AFE∽△DEC,然后由相似三角形的对应边成比例,求得答案.
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴△AFE∽△DEC,
∴AE:DE=AF:CD,
∵AE=2ED,CD=3cm,
∴AF=2CD=6cm.
故选B.
点评:
本题考点: 相似三角形的判定与性质;平行四边形的性质.
考点点评: 此题考查了相似三角形的判定与性质以及平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.
解题思路:由边形ABCD是平行四边形,可得AB∥CD,即可证得△AFE∽△DEC,然后由相似三角形的对应边成比例,求得答案.
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴△AFE∽△DEC,
∴AE:DE=AF:CD,
∵AE=2ED,CD=3cm,
∴AF=2CD=6cm.
故选B.
点评:
本题考点: 相似三角形的判定与性质;平行四边形的性质.
考点点评: 此题考查了相似三角形的判定与性质以及平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.