f(θ)=BA·AC=-AB·AC=bc/2
b/sinθ=c/sin(π/3-θ)=1/sinA
即:b=2sinθ/√3,c=2sin(π/3-θ)/√3
故:f(θ)=2sinθsin(π/3-θ)/3
2
f(θ)=2sinθsin(π/3-θ)/3
=(2/3)(-1/2)(cos(π/3)-cos(2θ-π/3))
=(-1/3)(1/2-cos(2θ-π/3))
=(1/3)cos(2θ-π/3)-1/6
0
f(θ)=BA·AC=-AB·AC=bc/2
b/sinθ=c/sin(π/3-θ)=1/sinA
即:b=2sinθ/√3,c=2sin(π/3-θ)/√3
故:f(θ)=2sinθsin(π/3-θ)/3
2
f(θ)=2sinθsin(π/3-θ)/3
=(2/3)(-1/2)(cos(π/3)-cos(2θ-π/3))
=(-1/3)(1/2-cos(2θ-π/3))
=(1/3)cos(2θ-π/3)-1/6
0