(2014•临汾模拟)某班优秀生16人,中等生24人,学困生8人,现采用分层抽样的方法从这些学生中抽取6名学生做学习习惯

1个回答

  • 解题思路:(Ⅰ)从48名学生中抽取6名学生做样本,样本容量与总体的个数的比为1:8,得到每个个体被抽到的概率.从而得到应抽取的学生人数.

    (Ⅱ)(1)在抽取到的6名学生中,3名中等生分别记为A1,A2,A3,2名优秀生分别记为A4,A5,1名学困生记为A6,列出所有结果即可.

    (2)从这6名学生中抽取的2名学生均为中等生(记为事件B)的所有可能结果为{A1,A2},{A1,A3},{A2,A3},共3种,进而可得概率为[1/5].

    (Ⅰ)优秀生、中等生、学困生中分别抽取的学生人数为2、3、1.

    (Ⅱ)(1)在抽取到的6名学生中,3名中等生分别记为A1,A2,A3,2名优秀生分别记为A4,A5,1名学困生记为A6

    则抽取2名学生的所有可能结果为

    {A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},

    {A2,A3},{A2,A4},{A2,A5},{A2,A6},

    {A3,A4},{A3,A5},{A3,A6},

    {A4,A5},{A4,A6},

    {A5,A6},共15种.

    (2)从这6名学生中抽取的2名学生均为中等生(记为事件B)的所有可能结果为

    {A1,A2},{A1,A3},{A2,A3},共3种,

    ∴P(B)=

    3

    15=

    1

    5.

    点评:

    本题考点: 古典概型及其概率计算公式;分层抽样方法.

    考点点评: 本题主要考查分层抽样,解题的关键是理解在抽样过程中每个个体被抽到的概率相等,属于基础题.

相关问题