有关于抛物线设抛物线y^2=4px(p>0)的准线与x轴的交点为M,过M点作直线L交抛物线于A,B两点,求线段AB中点的

3个回答

  • 设直线方程为y=k(x+p)

    与y^2=4px 联立

    得k^2(x^2+2px+p^2)=4px

    k^2x^2-(4p-2k^2p)x+k^2p^2=0

    则x1+x2=(4p-2k^2p)/k^2 (y1+y2)=k*(x1+x2)+2kp=(4p+2k^2p)/k+2kp=4p/k

    故x0=(x1+x2)/2=2p/k^2+p y0=(x1+x2)/2=2p/k

    既k=2p/y0

    故x0=2p/(2p/y0)^2-p=y0^2/2p-p

    故y0^2=2p(x0+p)

    y^2=2p(x+p)

    又方程k^2x^2-(4p-2k^2p)x+k^2p^2=0 有解

    故(4p-2k^2p)^2-4k^4p^2>0

    16p^2-16k^2p^2+4k^4p^2-4k^4p^2>0

    故16k^24p^2

    2p(x+p)>4p^2

    x+p>2p x>p