设直线方程为y=k(x+p)
与y^2=4px 联立
得k^2(x^2+2px+p^2)=4px
k^2x^2-(4p-2k^2p)x+k^2p^2=0
则x1+x2=(4p-2k^2p)/k^2 (y1+y2)=k*(x1+x2)+2kp=(4p+2k^2p)/k+2kp=4p/k
故x0=(x1+x2)/2=2p/k^2+p y0=(x1+x2)/2=2p/k
既k=2p/y0
故x0=2p/(2p/y0)^2-p=y0^2/2p-p
故y0^2=2p(x0+p)
y^2=2p(x+p)
又方程k^2x^2-(4p-2k^2p)x+k^2p^2=0 有解
故(4p-2k^2p)^2-4k^4p^2>0
16p^2-16k^2p^2+4k^4p^2-4k^4p^2>0
故16k^24p^2
2p(x+p)>4p^2
x+p>2p x>p