|a+b|=|a-b|的话,说明:a·b=0
即a⊥b,故:=π/2
而:|a+b|^2=c^2|b|^2,即:|a|^2=(c^2-1)|b|^2
(a+b)·(a-b)=|a|^-|b|^2=(c^2-2)|b|^2
|a-b|^2=|a+b|^2=|a|^2+|b|^2=c^2|b|^2
故:cos=(a+b)·(a-b)/(|a+b|*|a-b|)
=(c^2-2)|b|^2/(c^2|b|^2)=(c^2-2)/c^2|=1-2/c^2
c≥2,故:c^2≥4,即:0
|a+b|=|a-b|的话,说明:a·b=0
即a⊥b,故:=π/2
而:|a+b|^2=c^2|b|^2,即:|a|^2=(c^2-1)|b|^2
(a+b)·(a-b)=|a|^-|b|^2=(c^2-2)|b|^2
|a-b|^2=|a+b|^2=|a|^2+|b|^2=c^2|b|^2
故:cos=(a+b)·(a-b)/(|a+b|*|a-b|)
=(c^2-2)|b|^2/(c^2|b|^2)=(c^2-2)/c^2|=1-2/c^2
c≥2,故:c^2≥4,即:0