1)S[n]-S[n-1] = -3S[n]*S[n-1]
两边除以 - S[n]*S[n-1]
1/S[n] -1/S[n-1] =3
2)S[n]=1/(3n)
a[n]= S[n] - S[n-1] =1/( 3(1-n)n )
b[n]=2/(3n)
因为1/(n^2) < 1/( (n-1)n ) =1/(n-1) - 1/n
b2平方+b3平方+.+bn平方
=4/9*(1/2^2 +1/3^2+...+1/n^2)
1)S[n]-S[n-1] = -3S[n]*S[n-1]
两边除以 - S[n]*S[n-1]
1/S[n] -1/S[n-1] =3
2)S[n]=1/(3n)
a[n]= S[n] - S[n-1] =1/( 3(1-n)n )
b[n]=2/(3n)
因为1/(n^2) < 1/( (n-1)n ) =1/(n-1) - 1/n
b2平方+b3平方+.+bn平方
=4/9*(1/2^2 +1/3^2+...+1/n^2)