由平面图形的性质类比猜想空间几何体的性质,
一般的思路是:点到线,线到面,或是二维变三维;
由题目中直角三角形以下性质:
(1)斜边的中线长等于斜边边长的一半(边的性质),
我们可以推断三棱锥中,斜面的中面面积等于斜面面积的四分之一
(2)两条直角边边长的平方和等于斜边边长的平方(边的性质);
我们可以推断三棱锥中,三个直角面面积的平方和等于斜面面积的平方
(3)斜边与两条直角边所成角的余弦平方和等于1(边夹角的性质).
我们可以推断三棱锥中,斜面与三个直角面所成二面角的余弦平方和等于1.
故答案为:(1)斜面的中面面积等于斜面面积的四分之一;
(2)三个直角面面积的平方和等于斜面面积的平方;
(3)斜面与三个直角面所成二面角的余弦平方和等于1.