若(z-x)²-4(x-y)(y-z)=0,求证2y=x+z
(z-x)²-4(x-y)(y-z)
=(x-z)²-4(x-y)(y-z)
=[(x-y)+(y-z)]²-4(x-y)(y-z)
=(x-y)²+2(x-y)(y-z)+(y-z)²-4(x-y)(y-z)
=(x-y)²-2(x-y)(y-z)+(y-z)²
=[(x-y)-(y-z)]²
=(x+z-2y)²=0
x+z-2y=0
所以2y=x+z
若(z-x)²-4(x-y)(y-z)=0,求证2y=x+z
(z-x)²-4(x-y)(y-z)
=(x-z)²-4(x-y)(y-z)
=[(x-y)+(y-z)]²-4(x-y)(y-z)
=(x-y)²+2(x-y)(y-z)+(y-z)²-4(x-y)(y-z)
=(x-y)²-2(x-y)(y-z)+(y-z)²
=[(x-y)-(y-z)]²
=(x+z-2y)²=0
x+z-2y=0
所以2y=x+z