若a(n)=n/x^n,则有:
(x-1)a(n)=[n+1/(x-1)]/[x^(n-1)]-[n+x/(x-1)]/x^n.
上式容易证得(右边通分后整理即可).
依次令n=1、2、3、······、n,得:
(x-1)a(1)=[1+1/(x-1)]/x^0-[1+x/(x-1)]/x^1,
(x-1)a(2)=[2+1/(x-1)]/x^1-[2+x/(x-1)]/x^2,
(x-1)a(3)=[3+1/(x-1)]/x^2-[3+x/(x-1)]/x^3,
······
(x-1)a(n)=[n+1/(x-1)]/[x^(n-1)]-[n+x/(x-1)]/x^n.
将上述n个式子相加,得:
(x-1)S(n)=[1+1/(x-1)]/x^0-[n+x/(x-1)]/x^n
∴(x-1)S(n)=(x-1+1)/(x-1)-[n+x/(x-1)]/x^n,
∴(x-1)S(n)=x/(x-1)-[n+x/(x-1)]/x^n,
∴S(n)=x/(x-1)^2-[n+x/(x-1)]/[(x-1)x^n].
显然,当x>1、n∈N时,[n+x/(x-1)]/[(x-1)x^n]>0.
∴S(n)<x/(x-1)^2.
特别地,依次令上式中的x=2、3、4、5、······得:
S(2)<2/(2-1)^2=2.
S(3)<3/(3-1)^2=3/4.
S(4)<4/(4-1)^2=4/9.
S(5)<5/(5-1)^2=5/16.
······