利用边长相等的正三角形和正六边形的地砖镶嵌地面时,在每个顶点周围有a块正三角形和b块正六边形的地砖(ab≠0),则a+b

1个回答

  • 解题思路:正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明可以进行平面镶嵌;反之,则说明不能进行平面镶嵌.

    ∵正三边形和正六边形内角分别为60°、120°,

    60°×4+120°=360°,或60°×2+120°×2=360°,

    ∴a=4,b=1或a=2,b=2,

    ①当a=4,b=1时,a+b=5;

    ②当a=2,b=2时,a+b=4.

    故选B.

    点评:

    本题考点: 平面镶嵌(密铺).

    考点点评: 解决此类题,可以记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合.