已知f(x)=(4x^2-7)/(2-x),x∈[0,1)
(1)求f(x)的单调区间和值域
f'(x)=(8x(2-x)+(4x^2-7))/(x-2)^2
令f'(x)=0
得到4x^2-16x+7=0
x=3.5,x=0.5
x∈[0,0.5],f'(x)=1 当x>a,g'(x)>0,g(x)增
当-a0,g(x)增
当x=-a,g'(x)=0,g(x)极大
当x=a,g'(x)=0,g(x)极小
x∈[0,1],a>=1
g(x)单调递减
g(0)=-2a>=-3,a
已知f(x)=(4x^2-7)/(2-x),x∈[0,1)
(1)求f(x)的单调区间和值域
f'(x)=(8x(2-x)+(4x^2-7))/(x-2)^2
令f'(x)=0
得到4x^2-16x+7=0
x=3.5,x=0.5
x∈[0,0.5],f'(x)=1 当x>a,g'(x)>0,g(x)增
当-a0,g(x)增
当x=-a,g'(x)=0,g(x)极大
当x=a,g'(x)=0,g(x)极小
x∈[0,1],a>=1
g(x)单调递减
g(0)=-2a>=-3,a