若抛物线y=-x^2+mx+n的最高点为(-1,-3),
y=-x^2+mx+n
= -[x^2-mx+m^2/4-m^2/4]+n
= -(x-m/2)^2+m^2/4+n,
抛物线的最高点坐标在:
(-m/2,m^2/4+n),即:
m/2 =-1,
m^2/4+n=-3,
解之,
m=-2,
n=-4.
若抛物线y=-x^2+mx+n的最高点为(-1,-3),
y=-x^2+mx+n
= -[x^2-mx+m^2/4-m^2/4]+n
= -(x-m/2)^2+m^2/4+n,
抛物线的最高点坐标在:
(-m/2,m^2/4+n),即:
m/2 =-1,
m^2/4+n=-3,
解之,
m=-2,
n=-4.