http://tieba.baidu.com/p/2538800461?pid=37468214394&cid=0#37468214394
f(x)在[0,1]上可微,且f(x)的零点都是简单零点,即f(x1)=0,f(x1)的导数≠0,证明:f(x)在[0
1个回答
相关问题
-
设f(x)可导且f(x)=0,证明:F(X)=f(x)(1+/sinx/)在x=0点可导,并求F(0)的导数
-
设f(x)在[0,1]上有连续导数,且f(x)=f(0)=0.证明
-
f(x)在[0,1]上二阶可导,f(0)=0,且f''(x)/f'(x)≠2/(1-x).试证明方程:f(x)/f'(x
-
f(x)在区间[0,1]上可微,且e^(x-1)f(x)在(0,1/2)上的积分=1/2f(1),证明存在ξ∈[0,1]
-
f(x)在(0,无穷)可微,f(x)的导数是减函数f(0)=0,证对于任意x1,x2属于(0,无穷)f(x1)+f(x2
-
零点定理证明f(x)在[0,1]连续,且f(0)=0,f(1)=3.证明:存在α∈(0,1),使f(α)=e^α
-
设函数f(x)在[0,1]上具有二阶导数,且f(0)=f(1)=0,minf(x)=—1 x∈[0.1].证明maxf'
-
设f(x)在[0,1]上有连续的一阶导数,且|f'(x)|≤M,f(0)=f(1)=0,证明:
-
设f(x)可导,且f(0)=0,证明F(X)=f(x)(1+/SINX/)在x=0处可导
-
1.设f(x)在[0,1]上连续,且f(0)=f(1),证明:存在x0∈[0,1],使得f(x0)=f(x0)+1/4