(1)y=(x2-2x+6)/x+1
=x-3+9/(x-1)
=(x-1)+9/(x-1) -2
≥2√[(x-1)*9/(x-1)]-2
=6-2
=4
故最小值为4
(2)设x属于R且x2+y2/2=1,
则y^2=2-2x^2
根号下1+y2=√(3-2x^2)
≤√3
故最大值为√3
(1)y=(x2-2x+6)/x+1
=x-3+9/(x-1)
=(x-1)+9/(x-1) -2
≥2√[(x-1)*9/(x-1)]-2
=6-2
=4
故最小值为4
(2)设x属于R且x2+y2/2=1,
则y^2=2-2x^2
根号下1+y2=√(3-2x^2)
≤√3
故最大值为√3