解题思路:过P作PB垂直于直线x=-1,垂足为B,根据抛物线的定义得:|PA|+d=|PA|+|PB|=|PA|+|PF|.利用三角形两边之和大于第三边,可得当且仅当P、A、F三点共线时,|PA|+d达到最小值,因此可用两点的距离公式求出|PA|+d的最小值.
过P作PB垂直于直线x=-1,垂足为B∵抛物线方程为y2=4x,∴2p=4,得p2=1,可得焦点F(1,0),且直线x=-1是抛物线的准线,因此,|PA|+d=|PA|+|PB|=|PA|+|PF|∵|PA|+|PF|≥|AF|∴当且仅当P、A、F三点共线时,|PA|+|PF|...
点评:
本题考点: 两点间距离公式的应用;点到直线的距离公式.
考点点评: 本题给出定点A和抛物线上动点P,求P到A点与P到抛物线准线距离之和的最小值,着重考查了抛物线的几何性质和两点之间的距离公式等知识,属于中档题.