解题思路:根据直径所对的圆周角是直角得∠ACB=90°;根据三角函数定义知cos∠BPC=PC:PB;易证△PCD∽△PBA,得PC:PB=CD:AB.
∵AB是直径,
∴∠ACB=90°.
∴cos∠BPC=PC:PB.
∵∠ACD=∠ABD,∠CPD=∠BPA,
∴△PCD∽△PBA.
∴PC:PB=CD:AB=CD:1=CD.
故选C.
点评:
本题考点: 相似三角形的判定与性质;圆周角定理;锐角三角函数的定义.
考点点评: 此题考查圆周角定理、三角函数定义、相似三角形的判定和性质,难度中等.