an=Sn-S(n-1)=n² + n - (n-1)² - (n-1) = 2n
∴b1=a1=2
b2=b1*(a2-a1)=4
由{bn}为等比数列,容易推出
bn=2ⁿ
则 dn=2ⁿ×√n(n+1)
Dn=d1+d2+...+dn
现在来证明Dn < n×3ⁿ
用数学归纳法,当n=1时,
D1=d1=2×√2 < 1×3¹
即当n=1时,不等式成立.
假设当n=k时不等式成立,即:
Dk < k ×3^k
那么当n=k+1时,
D(k+1)=Dk+d(k+1)
< k ×3^k + 2^(k+1) × √(k+1)(k+2)
< k ×3^k + 2^(k+1) × (k+3/2) 注:√(k+1)(k+2) < k+3/2(两面平方展开很容易发现)
= k ×3^k + 2^(k+1) × k + 2^(k+1) × 3/2
= k ×3^k + 2^k × 2 × k + 2^k × 2 × 3/2
= k ×3^k + 2^k × 2k + 2^k × 3
< k ×3^k + 3^k × 2k + 3^k × 3
= 3^k × (k+2k) +3^(k+1)
= 3^k × 3k +3^(k+1)
= 3^(k+1) × k +3^(k+1)
= (k+1) × 3^(k+1)
也就是说,当n=k+1时,原式也成立.
由数学归纳法,Dn