(tanα-3)(sinα+cosα+3)=0
sinα+cosα+30,tanα-3=0,tanα=3.
(4cosα-2sinα)/(5cosα+3sinα)=(4-2tanα)/(5+3tanα)=(4-6)/(5+9)=-1/7
(2/3)(sinα)^2+(1/4)(cosα)^2
=[(2/3)(sinα)^2+(1/4)(cosα)^2]/[(sinα)^2+(cosα)^2]
=[(2/3)(tanα)^2+1/4]/[(tanα)^2+1]
=5/8
(tanα-3)(sinα+cosα+3)=0
sinα+cosα+30,tanα-3=0,tanα=3.
(4cosα-2sinα)/(5cosα+3sinα)=(4-2tanα)/(5+3tanα)=(4-6)/(5+9)=-1/7
(2/3)(sinα)^2+(1/4)(cosα)^2
=[(2/3)(sinα)^2+(1/4)(cosα)^2]/[(sinα)^2+(cosα)^2]
=[(2/3)(tanα)^2+1/4]/[(tanα)^2+1]
=5/8