sin(15π/7+a)=sin(2π+1π/7+a)=
cos(a-13π/7)=cos(a-13π/7+2π)=cos(a+π/7)
sin(20π/7-a)=sin[π-(20π/7-a)]=sin[3π-(20π/7-a)]=sin(π/7+a)
cos(a+22π/7)=cos[-(a+22π/7)]=cos[2π-(a+22π/7)]=cos[-(a+π/7)]=cos(a+π/7)
代入得所求部分为:[sin(π/7+a)+cos(a+π/7)]/[(sin(π/7+a)-cos(a+π/7)]
分子分母同除cos(a+π/7),得[tan(a+π/7)+1]/[tan(a+π/7)-1]
而tan(a+8π/7)=tan(a+π/7)=a
所以原式=(a+1)/(a-1)