解
[[[1]]]
易知,2cos²[(C+B)/2]
=1+cos(B+C)
=1-cosA
∴m=(2, 1-cosA) n=((sinA)/2, -1)
∴mn=sinA+cosA-1=(√2)sin[A+45º]-1
∴当(mn)最大时,A=45º
[[[2]]]
由题设及正弦定理可知
b/sinB=c/sinC=a/sinA=2√2
∴b=(2√2)sinB, c=(2√2)sinC
∴面积S=(1/2)bcsinA=(√2)2sinBsinC=(√2)[cos(B-C)-cos(B+C)]
=(√2)[cos(B-C)+(√2/2)]≤1+√2
等号仅当B=C时取得
∴Smax=1+√2