由正弦定理,可得
a/(c-2b)=sinA/(sinC-2sinB)
于是sinA/(sinC-2sinB)=-cosA/cosC
即sinAcosC+cosAsinC=2sinBcosA
于是有sin(A+C)=2sinBcosA
即sinB=2sinBcosA,
cosA=1/2,A=60°
由正弦定理,可得
a/(c-2b)=sinA/(sinC-2sinB)
于是sinA/(sinC-2sinB)=-cosA/cosC
即sinAcosC+cosAsinC=2sinBcosA
于是有sin(A+C)=2sinBcosA
即sinB=2sinBcosA,
cosA=1/2,A=60°