证明:(n+1)!/k!-n!/(k-1)!=(n-k+1)*n!/k!(k≤n)
1个回答
略证:
(n+1)!/k!-n!/(k-1)!
=(n+1)×(n!)/k! - n!/(k-1)!
=[(n+1)×(n!) - k×n!]/k!
=(n-k+1)×n!/k!
相关问题
试证明 x/[n(n+k)]=(x/k)[1/n-1/(n+k)]
为什么(n+1)^k=n^k(1/n+1)^k
设数列{1n}满足:当n=2k-2(k∈N*)时,1n=n;当n=2k(k∈N*)时,1n=1k;记
(1)已知k、n∈N * ,且k≤n,求证: k C kn =n C k-1n-1 ;
数列与不等式求证:n<(k=1,n)∑√(1+(1/k²)+(1/(k+1)²))<n+1.(n∈N
挑战这里的数学牛人证明:(-1)^(n-k)*(k^n)/[(n-k)!*k!],k从1到n求和(sigma求和号不好打
(Ⅰ)已知k∈N,n∈N*,且 k≤n,求证:[n+1/k+1]Ckn=Ck+1n+1;
k是一个正奇数,证明 1^k+2^k+...+n^k 能被(n+1)整除
lim(n→∞)∑(k=1,n)1/√n^2+k
lim(n趋于无穷)[Σ(k从1到n)ln(1+k/n)/(n+k/n)]